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CYCLIC LARGE SETS 
OF STEINER TRIPLE SYSTEMS OF ORDER 15 

KEVIN T. PHELPS 

ABSTRACT. We examine a class of large sets of Steiner triple systems of order 
15 having an automorphism consisting of two fixed points and a 13-cycle. We 
exhibit all members of this class: there are 256 nonisomorphic systems. We 
examined these members for initial configurations which could lead to a large 
set of Steiner quadruple systems of order 16 and established that no large set 
exists having three fixed points and a 13-cycle. 

1. INTRODUCTION 

A Steiner triple system of order v , briefly STS(v), is a pair (V, B), where 
V is a v-set and B is a set of triples of V such that every 2-subset of V is 
contained in exactly one triple. It is well known that an STS(v) exists if and 
only if v _ 1 or 3 mod 6. 

Let K3 denote the set of all 3-subsets of a set, V (i.e., complete 3-uniform 
3 

hypergraph); a partition of Kv3 into v - 2 sets B1, B2 ..., Bv-2 such that, 
for each i = 1, 2,..., v - 2, (V, Bi) is an STS(v), is said to be a large set 
of STS(v). In a series of papers, Lu Jia Xi [8-14] established the existence 
of a large set of STS(v) for all v -1 or 3 mod 6, v > 9, with a handful 
of possible exceptions (or a possible handful of exceptions, see the unfinished 
manuscript [14]). With the existence question essentially settled, one considers 
next the enumeration problem. 

Large sets of STS(7) do not exist. There exist two large sets of STS(9) 
and at least two large sets of STS( 13) (cf. [15]). One of the first constructions 
of large sets of STS(v + 2) produced sets invariant under the cycle group of 
order v; that is to say, there is an automorphism consisting of two fixed points 
and a v-cycle which permute the v disjoint STS(v + 2) among themselves. 
Such systems exist infinitely often [16], however it is still open as to whether 
they exist for all admissible orders. We will refer to large sets of STS(v + 2) 
having this automorphism as cyclic large sets of STS(v + 2). 

Cyclic large sets of STS(v + 2) have been completely enumerated for v - 

5, 7, and 1 1 ([6]; cf. [15]). We have enumerated all nonisomorphic systems for 
v = 13, i.e., all cyclic large sets of STS(15), and found 256 such systems. 
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A second related problem is that of (cyclic) large sets of Steiner quadruple 
systems of order v . Here we ask for a partition of K%, the set of all 4-subsets 
of a v-set, into v - 3 disjoint sets such that each set is the set of blocks of a 
Steiner quadruple system; that is, any two 4-subsets contained in the same part 
of the partition have at most two points in common. 

Similarly, a cyclic large set of quadruple systems is one having an automor- 
phism consisting of three fixed points and a v - 3 cycle. No large set of Steiner 
quadruple systems has been found. It is known that none exists for n = 8 and 
10 [7] and that no cyclic large set exists on 14 points [6]. We also considered 
cyclic large sets of Steiner quadruple systems of order 16 and established that 
none exists. 

2. CYCLIC LARGE SETS OF STS(15) 

Steiner triple systems of order 15 were first enumerated by Cole, Cummings, 
and White [2] and enumerated again with the aid of a computer by Hall and 
Swift [5]. There are 80 nonisomorphic STS(15); of these, 63 occur in some 
cyclic large set. In the appendix (see the Supplements section at the end of this 
issue), we list for each of the 80 different triple systems their cyclic index vector 
and the solutions (if any) in which they occur. The numbering of the triple 
systems refers to the standard numbering found in [1 5]. 

Prior to this, several cyclic large sets of STS(15) had been constructed by 
Denniston [3, 4], one of which was "doubly resolvable". This means that each 
of the disjoint triple systems could be further partitioned into parallel classes, or 
1-factors. There are four STS( 1 5) which are resolvable in this sense, and these 
are indicated by (*) in the summary listing. Note that the doubly resolvable 
solution discovered by Denniston is unique. 

It is easy to see, using Bays' Theorem [1], that any two cyclic large sets 
of STS(15) which are isomorphic must be multiplier isomorphic. Hence, a 
simple isomorphism rejection routine was easy to implement as part of the 
search program. 

The 3-subsets of Z13 (the integers mod 13) fall into orbits of length 13 
under the action of (Z13, +) . The search for cyclic solutions involved finding 
one representative of each orbit such that these representatives would form a 
partial triple system. The leave, or set of uncovered pairs, of this partial triple 
system on {0, 1, ... , 12} must consist of one isolated vertex and 12 vertices 
having degree 2. Triples containing the fixed points 13, 14 are then formed by 
joining these points to an appropriate pair in the leave graph. Of course this is 
not always possible. The isolated point is joined with the pair {13, 14}; the 
rest of the leave graph is partitioned into two disjoint 1-factors such that in each 
1-factor every difference (mod 13) is in some edge. 

Thus, associated with each fixed point is a "starter" or cyclic 1-factorization. 
Again isomorphic "starters" must be multiplier isomorphic. We find 14 noniso- 
morphic starters occurring among our solutions. We list these in the supplement. 
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In principle, the leave graph could admit different factorizations; however, in 
all but one solution the factorization was unique. This exception, solution # 130, 
admits an alternate factorization which gives solution #255. It is not included 
in the listing. 

Finally, the listing of all solutions starts with the list of nonisomorphic 
"starter" followed by a set of representatives of the orbits of triples (mod 13) . 
For each representative triple {x, y, z} we have x + y + z 0 (mod 13). 

Each solution has the solution number, followed by the two 1-factorizations 
associated with the fixed points along with the multipliers which map these 1- 
factors (listed above) onto the leave graph. Thus, solution #0 has 1 -factorizations 
F - 6 associated with 13 and F - 13 associated with 14. Multiplying 1-factor 
F - 6 by 7 (mod 13) gives the pairs associated with the point 13, etc. 

The next line of numbers associated with each solution indicates which triple 
from that orbit is in this solution. The first triple in each orbit is the rep- 
resentative; this is indicated by a "0". Thus solution #0 consists of the triples 
{1, 3, 9}, {2, 5, 6}, {4, 10, 12}, {8, 7, 11}, {1, 2, 0}, {5, 7, 2}, 
{9, 0, 5}, {6, 1, 11}, etc. The triple {0, 13, 14} *is always assumed to be 
one of the triples in the system. 

3. EXTENSION TO LARGE SETS OF SQS(16) 

Kramer and Mesner [6] enumerated cyclic large sets of STS( 13) and showed 
that none could be extended to a cyclic large set of SQS(14). We also checked 
the solutions enumerated here to see if these could be extended to cyclic large 
sets of SQS(16). Only four were found which could possibly be extended. 
However, none could be. We conclude that no cyclic large set of SQS(16) 
exists. 

The initial configurations involved the following systems: 

(1) #24 #210 #168 

(2) #61 #144 #229 

(3) #61 #214 #130 

(4) #61 #214 #255 

The initial configurations involved all quadruples containing the fixed points 
(i.e., { 13, 14, 15}). Thus we needed three disjoint copies of solutions, one for 
each fixed point. However, the 1-factors associated with the different systems 
must agree. Thus, for example, solution #24 has 1-factors isomorphic to F - 
3 and F - 13; #210 has 1-factors isomorphic to F - 3 and F - 5; #168 
has 1-factors isomorphic to F - 5 and F - 13. In this example we must 
multiply solution #168 by 4 (mod 13) to fit it with #24. To fit #210 with 
these two systems, we must multiply by 4 *8 1 (mod 13) or equivalently by 
8 * 3- l(mod 13). The resulting three systems share these three 1-factors and 
must be disjoint as well. 
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We also considered potential initial configurations consisting of several iso- 
morphic copies of a solution which possessed an additional automorphism, but 
none existed. (This case was done with the help of Yeow Meng Chee.) 

At this point, one must question whether cyclic large sets of SQS(v + 3) 
exist. Should this be so, finding a large set of these designs will be very difficult. 
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